Factorization of Cyclic and Symmetric polynomials

1. Definitions

- (a) y = f(x, y, z) is cyclic if f(x, y, z) = f(y, z, x)y = f(w, x, y, z) is cyclic if f(w, x, y, z) = f(x, y, z, w)
- (b) A function in any number of variables is **symmetric** when it is unaltered by interchanging any two of the variables.

y = f(x, y, z) is **symmetric** if f(x, y, z) = f(y, x, z) = f(z, y, x)

(c) A polynomial is **homogeneous** if the degree of each term is the same. e.g. $f(x, y, z) = x^2y + y^2z + 2xyz$ is homogeneous, but $g(x, y, z) = x^2yz + x$ is not.

2. Table of cyclic and symmetric polynomials:

Homogeneous polynomials with variables x, y, z				
Degree	Cyclic	Symmetric		
1	A(x + y + z)	A(x + y + z)		
2	$\boldsymbol{A}(\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2) + \boldsymbol{B}(\mathbf{x}\mathbf{y} + \mathbf{y}\mathbf{z} + \mathbf{z}\mathbf{x})$	$A(x^2 + y^2 + z^2) + B(xy + yz + zx)$		
3	$A(x^{3} + y^{3} + z^{3}) + B(x^{2}y + y^{2}z + z^{2}x) + C(xy^{2} + yz^{2} + zx^{2}) + Dxyz$	$A(x^{3} + y^{3} + z^{3}) + B(x^{2}y + y^{2}z + z^{2}x + xy^{2} + yz^{2} + zx^{2}) + Cxyz$		

Homogeneous polynomials with variables w, x, y, z				
Degree	Cyclic	Symmetric		
1	A(w + x + y + z)	A(w + x + y + z)		
2	$A(w^{2}+x^{2}+y^{2}+z^{2})+B(wx+xy+yz+zw)$	$A(w^{2}+x^{2}+y^{2}+z^{2})+B(wx+wy+wz+xy+xz+yz)$		
3	$A(w^{3} + x^{3} + y^{3} + z^{3}) + B(w^{2}x + x^{2}y + y^{2}z + z^{2}x)$ $+ C(wx^{2} + xy^{2} + yz^{2} + zx^{2}) + D(wxy + xyz + yzw + zwx)$	$A(w^{3} + x^{3} + y^{3} + z^{3}) + B(w^{2}x + w^{2}y + w^{2}z + x^{2}y + x^{2}z + y^{2}z)$ $wx^{2} + wy^{2} + wz^{2} + xy^{2} + xz^{2} + yz^{2}) + C(wxy + xyz + yzw + zwx)$		

3. Useful Theorems

(a) The algebraic sum, difference, product and quotient of two cyclic (or symmetric) functions are cyclic (symmetric).

(b) Factor theorem

(x - y) is a factor of $f(x, y, z) \iff f(y, y, z) = 0$

(c) A symmetric polynomial is cyclic but not vice versa. For example, $f(x, y, z) = x^2y + y^2z + z^2x$ is cyclic but not symmetric.

Factorize $f(x, y, z) = x^3 (y - z) + y^3 (z - x) + z^3 (x - y)$		
$f(y, z, x) = y^{3} (z - x) + z^{3} (x - y) + x^{3} (y - z)$ = f(x, y, z) ∴ f is cyclic	Check that whether f is cyclic / symmetric: f is cyclic but not symmetric. f is homogeneous of degree 4.	
$f(y, y, z) = y^{3} (y - z) + y^{3} (z - y) + z^{3} (y - y)$ = y ³ (y - z) - y ³ (y - z) + 0 = 0 By Factor theorem, (x - y) is a factor of f.	Sometimes, there is no need to expand all terms. Employ $(y - z)^{2n-1} = -(z - y)^{2n-1}$	
Since f is cyclic, (x - y)(y - z)(z - x) is a factor of f.	There is no need to use factor theorem again.	
Since $deg[f(x, y, z)] = 4$ deg[(x - y)(y - z)(z - x)] = 3 f(x, y, z) = (x - y)(y - z)(z - x)[k(x + y + z)]	Product of cyclic polynomials is cyclic. We therefore need a cyclic polynomial of degree 1. Use the table in 2 above to help.	
f(2, 1, 0) = (2 - 1)(1 - 0) (0 - 1) [k(2 + 1 + 0)] = - 6k f(2, 1, 0) = 2 ² (1 - 0) + 1 ³ (0 - 2) + 0 ³ (2 - 1) = 6 ∴ - 6k = 6	Instead of substitutions, you may also use Comparing coefficient method . Compare coefficients of x ³ y term in this case	
$\therefore k = -1$ $\therefore f(x, y, z)$ $= - (x - y)(y - z)(z - x)(x + y + z)$	can give $k = -1$. You may also write: f(x, y, z) = (x + y + z)(x - z)(z - y)(y - z)	

5. Some common factors of cyclic polynomial f(x, y, z):

Factor	Test
(x+y)(y+z)(z+x)	f(-y, y, z) = 0
(x - y)(y - z)(z - x)	f(y, y, z) = 0
xyz	f(0, y, z) = 0
x + y + z	f(-y - z, y, z) = 0
(x + y - z)(y + z - x)(z + x - y)	f(z - y, y, z) = 0